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Data are fundamental sources of insight for experimental and computational sciences.
The Department of Energy acknowledges the challenges posed by fast-growing scientific
data sets and more complex data. The graph abstraction provides a natural way to rep-
resent relationships among complex fast-growing scientific data sets. On future exascale
systems, power consumption is of primary concern yet existing graph algorithms consume
too much energy per useful operation due to their high communication costs, lack of local-
ity, and inability to exploit hierarchy. This project explores methods to increase the energy
efficiency of parallel graph algorithms and data mining tasks. A new family of algorithms
will be developed to drastically reduce the energy footprint and running time of the graph
and sparse matrix computations that form the basis of various data mining techniques. This
project will also exploit the well-known duality between graph and sparse matrices to de-
velop communication-avoiding graph algorithms that consume significantly less power. This
project is relevant to DOE mission- critical science including bioinformatics and genomics
with particular emphasis on plant genomics that can result in better biofuels through effi-
cient genetic mapping, climate science where recent graph-based methods show increased
accuracy in hurricane predictions, and combustion science where graph search techniques
are used to analyze extreme-scale simulation data.

1 Summary

The early-career research project has made important progress during FY 2015. Specifically,
our accomplishments include:

e Development of novel higher-level communication-avoiding matrix kernels for graph

algorithms (detailed in Section 3.1).

e New formulations of graph algorithms in the language of linear algebra, as described
in Section 3.2.

e Standardization of linear-algebraic building blocks for graph computations (Graph-
BLAS), as described in Section 3.3.

e Parallel data and graph analytics kernels for computational genomics. This is in col-
laboration with MANTISSA (ASCR - Applied Math) and DEGAS (ASCR - Computer
Science) projects, and the details are explained in Section 3.4.
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DOE relevance of each research accomplishment is mentioned within the corresponding
section. Our next year plans to further advance both of these research areas, as well as
our plans to expand our research into performing low-rank decompositions, such as non-
negative matrix factorization, in parallel. Further details can be found in Section 4. Overall,
our project so far resulted in six peer-reviewed publications [11, 13, 14, 2, 4, 3], and one
invited article [17]. In addition, we have two papers under review in the top journals (IEEE
Transactions on Parallel Computing and STAM Journal of Scientific Computing).

The report concludes with lists of awards, software artifacts, presentations, community
service, and references. In particular, Dr. Bulug was one of the three recipients of the IEEE
TCSC Award for Excellence for Early Career Research (awarded by the IEEE Technical
Committee on Scalable Computing) in 2015. Dr. Bulug was also an invited speaker in the
IEEE HPEC conference.

2 Personnel

The project is lead by Aydin Bulug, who spends about 60% of his time on this project,
on average. In addition, Ariful Azad, a postdoctoral fellow, works full time (100%) on
this project. We also temporarily hired an undergraduate student, Chaitanya Aluru, from
UC Berkeley, to help with the implementation of parallel algorithms for identifying heavy
hitter (an important kernel used in the HipMER genome assembler pipeline (Section 3.4)
to address the load imbalances that arise in the analysis of complex repetitive genomes).
We plan to keep him part time during this academic year as well, in order to work with
him on parallel non-negative matrix factorization (subject to the funding limitations).

3 Progress and Accomplishments

3.1 Communication-Avoiding Matrix Kernels for Graph Algorithms

Sparse matrix-matrix multiplication (SpGEMM) enables efficient parallelization of various
graph algorithms. It is the workhorse of a scalable distributed-memory implementation of
betweenness centrality, an algorithm that finds influential entities in networks. It is also the
most time-consuming step (i.e. Galerkin triple product) of the algebraic multigrid setup
phase at large concurrencies. The linear scaling electronic structure calculations, which are
exponentially faster than their dense counterparts, also rely on SpGEMM [7].

Existing parallel algorithms for SpGEMM spend the majority of their time in inter-
node communication on large concurrencies [10]. Earlier in this project, we had previ-
ously investigated communication-optimal algorithms for SpGEMM, and had presented new
communication-optimal algorithms that both attain the communication lower bounds [5].
In FY15, we developed the high-performance implementation of a 3D SpGEMM algorithm,
which outperforms all the existing implementations at large scale.

Our implementation exploits inter-node parallelism within a third processor grid di-
mension as well as thread-level parallelism within the node. It achieves higher performance
compared to other available formulations of distributed-memory SpGEMM, without com-
promising flexibility in the numbers of processors that can be utilized. In particular, by
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varying the third processor dimension. as well as the number of threads, one can run our
algorithm on many processor counts.

The percentage of time spent in communication (data movement) is significantly lower
in our new implementation compared to a 2D implementation. This is advantageous for
multiple reasons. First, the bandwidth for data movement is expected to increase at a slower
rate than other system components, providing a future bottleneck. Second, communication
costs more energy than computation [18, Figure 5].
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Figure 1: Weak scaling of sparse matrix-matrix multiplication on NERSC Edison, a Cray
X(C30 using the nlpkkt160 matrix from the University of Florida Sparse Matrix Collection.
Performance benefits of the 3D algorithm and multithreading can be realized on higher
concurrency.

Figure 1 shows strong scaling results for the 3D iterative SpGEMM algorithm on NERSC
Edison when multiplying the nlpkkt160 matrix from the University of Florida Sparse Matrix
Collection by itself. Due to the fill-in, the output matrix is denser. The number of grid
layers, c, refers to the third dimension of the processor grid. For ¢ = 1, the algorithm
degenerates into a 2D algorithm. The number of threads used per MPI process is designated
with ¢t. The paper including these results are submitted to the SIAM Journal of Scientific
Computing and its preprint is available online [1]. We expect to improve on these results
via overlapping communication with computation.

The same paper also includes new multicore algorithms that exploit the increasing intra-
node parallelism. A new implementation of the column-by-column algorithm of Bulug and
Gilbert [9] shows good intra-node scaling. Figure 2 shows the scaling of this new imple-
mentation in comparison to MKL on inputs of (a) R-MAT graphs of scale 16 (i.e. matrices
of dimensions 2'6 x 2'6, each having approximately 16 nonzeros per column/row, following
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the exact parameters of the Graph500 benchmark) on a single node of NERSC/Edison, and
(b) a real sparse matrix from the Florida collection.

(a) Scale 16 G500 x G500 matrix multiply (b) Cagel2 x Cagel2 matrix multiply
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Figure 2: Scaling of multithreaded SpGEMM algorithm versus MKL

3.2 New graph algorithms in the language of linear algebra

Graph matching algorithms: We have been applying the techniques developed during
our earlier parallel breadth-first search (BFS) work as described in the FY14 report, to
more complex problems such as bipartite graph matching, with considerable success.

Given the limited scalability of existing graph matching algorithms, we investigated
new algorithmic paradigms, such as utilizing the matrix-based primitives and using novel
techniques that eliminate redundancies that are artifacts of algorithmic parallelism. We first
developed a new multi-source maximum-cardinality matching algorithm that searches for
a set of vertex-disjoint augmenting paths via specialized BFS searches from all unmatched
vertices. This algorithm employs a novel tree-grafting method that eliminates most of the
redundant edge traversals by grafting a part of a search tree that yields an augmenting
path onto another search tree from which we have not found an augmenting path [4]. The
shared memory implementation of the tree-grafting algorithm scales up to 80 threads of
an Intel multiprocessor (Westmere-EX) and is 10 times faster than current state-of-the-art
matching algorithms for several important classes of graphs.

Despite good scalability of matching algorithms on shared memory multiprocessors, it
remains a challenge to achieve high performance on distributed platforms because these
algorithms rely on searching for paths in the graph, and when few long paths pass through
multiple processors, there is little concurrency. In this endeavor, we design matching al-
gorithms on sparse graphs in terms of linear algebra routines such as sparse matrix-vector
multiplication (SpMV) and other operations on sparse and dense vectors. We used existing
functionalities of the Combinatorial BLAS (CombBLAS) library [8] and added several new
functions to the library so that we can express the matching algorithms completely by a
small number of functions from CombBLAS. By using these functions we implemented sev-
eral cardinality matching algorithms, with impressive results [2]. The same matrix-algebraic
framework is used to implement three different algorithms with minimal modifications to the
underlying semiring operations and data structures. The strong scaling results of computing
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Figure 3: Strong scaling of maximal matching algorithms on RMAT graphs.

maximal cardinality matchings on synthetically generated graphs that follow a power-law
degree distribution is shown in Figure 3.

In terms of DOE impact, this provides a first step towards a scalable solution to the dis-
tributed cardinality and weighted matching problems, because maximal cardinality match-
ing is a subroutine used by both maximum cardinality and maximum weighted matching
algorithms. In our primary application area of sparse linear solvers, the maximum cardinal-
ity matching can be applied to permute a matrix to its block triangular form, potentially
leading to faster linear solvers.

Triangle counting algorithms: Triangle counting and enumeration are important
kernels that are used to characterize graphs. They are also used to compute important
statistics such as clustering coefficients. We provided a simple exact algorithm that is
based on operations on sparse adjacency matrices. By parallelizing the individual sparse
matrix operations, we achieved a parallel algorithm for triangle counting. The algorithm is
generalizable to triangle enumeration by modifying the semiring that underlies the matrix
algebra. We presented a new GraphBLAS primitive, masked matriz multiplication, that
can be beneficial especially for the enumeration case. We provide results from an initial
implementation for the counting case along with various optimizations for communication
reduction and load balance. The preliminary results from this work (which we plan to
extend in FY16) is published [3].

3.3 The GraphBLAS kernels

The GraphBLAS is an effort to define standard building blocks for graph algorithms in the
language of linear algebra. Dr. Bulug co-leads a multi-institutional group of researchers that
are working on defining the right primitives and providing initial reference implementations.
So far, we have run monthly telecons among key 4-5 people until May 2015, which was
followed by a face-to-face meeting at LBL on API design that was attended by =~ 30 people
on June 2015 [16]. Since then, Dr. Bulug has been leading weekly teleconferences with key
players from MIT Lincoln Labs, IBM Research, Indiana University, Intel, Georgia Tech, and
many others. We have successfully ran the first peer-reviewed Graph Algorithms Building
Blocks (GABB) workshop at IPDPS’15. The call for papers for next version is currently
out at http://www.graphanalysis.org/workshop2016.html.

GraphBLAS will include the reduced-communication algorithms described in this report.
The GraphBLAS effort has implications for exascale as well: graph algorithms will need
to be redesigned to address the joint issues of complexity, resilience, and scalability. The
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translation of every individual graph algorithm to exascale platforms will be prohibitively
difficult due to the complexity of hardware architectures and the diversity of graph oper-
ations. Primitives allow algorithm designers to think on a higher level of abstraction, and
reduce duplication of implementation efforts. Our conjecture is that with the large body of
experience with sparse linear algebra in extreme scale computing, the basic graph algorithm
primitives we have proposed will be an effective way to manage the exascale challenge. In
particular, if we can manage the exascale issues (scalability and reliability) inside the prim-
itives, then graph algorithm developers can explore algorithms for these machines using the
same approaches used on modest sized parallel systems. This would help assure that the
graph-based software needed for these machines exists as exascale computers emerge.

More about our progress can be found in the GraphBLAS website [15]. Dr. Bulug has
also co-authored an invited paper on case for GraphBLAS [17]. Our team develops new
algorithms for GraphBLAS kernels and evaluates relative merits of different approaches.
Sparse matrix-matrix multiplication (SpGEMM), which was previously described in this
report, is a key GraphBLAS kernel and perhaps the most challenging one.

3.4 Genome assembly

We have used high-performance graph analysis and data engineering to address the chal-
lenges of large-scale genome assembly. Recent advances in sequencing technology have
made the redundant sampling of genomes extremely cost-effective. Such a sampling con-
sists mostly of shorts reads with low error rates most of which can be aligned to a refer-
ence genome in a straightforward way. De novo genome assemblers, on the other hand,
reconstruct an unknown genome from a collection of short reads, without requiring a ref-
erence genome. De novo assembly is therefore more powerful and flexible than mapping-
based approaches, since it can be applied to novel genomes and can in principle discover
previously unknown sequences in species for which reference genomes do not exist. This
advantage, however, comes at a cost of significantly increased runtime and memory require-
ments. If de novo assembly could be performed rapidly, it would be preferable to mapping
based approaches for large-scale human genome sequencing, and other biomedical model
and agricultural species.

The components of the de novo genome assembly pipelines have very different execution
profiles and unique challenges. The initial processing and data reduction (k-mer analysis)
is bandwidth-bound, the subsequent construction and traversal of the de Bruijn graph are
latency-bound, and the sequence alignment is compute bound. Many of the graph processing
techniques developed for low-diameter graphs are not applicable to de Bruijn graphs, which
have very low degree and a high diameter.

Meraculous is a hybrid k-mer/read-based whole genome assembler that avoids explicit
error correction steps. While Meraculous is one of the best assemblers available in terms
of accuracy, it is known to be too slow for large genomes. HipMer is our high-performance
re-engineering of Meraculous for distributed-memory supercomputers, designed and imple-
mented from scratch using advanced data structures and Unified Parallel C (UPC)’s remote
atomics capabilities. This year, we completed the HipMer pipeline beyond last year’s ad-
vances in parallel construction and traversal of the de Bruijn graph. We provided the first
complete parallelization of the contigs-to-reads alignment step, including the seed index
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Figure 4: Strong scaling of k-mer analysis on wheat, showing the effect of the heavy hitters
(high frequency k-mers) optimization.

(the database) construction step. This work has been published in IPDPS [14], a premier
conference in parallel computing.

Recently, we completed the remaining steps of the HipMer pipeline. We also developed
new methods that can efficiently handle complex repetitive genomes with skewed k-mer
distributions that normally create load imbalance for naive approaches. We utilized state-
of-the-art algorithmic ideas from big data analysis such as finding heavy hitters (very high-
frequency items) with minimal communication in a single streaming pass. The effect of this
optimization is shown in Figure 4.

HipMer can assemble large genomes such as human and wheat in the matter of min-
utes compared to days that original Meraculous took. For example, HipMer assembles the
entire human genome end-to-end in about eight minutes using 15,360 computer processor
cores [13]. With this tool, we estimate that the output from the world’s biomedical sequenc-
ing capacity could be assembled using just a portion of NERSC’s Edison supercomputer.
Additional, as described in the same paper that will appear in SC’15 [13], we optimize the
traversal of the de Bruijn graph of k-mers by employing a novel communication-avoiding
parallel algorithm in a variety of practical use-case scenarios, such as the assembly of closely
related genomes. Recall that the computational motif for de Bruijn graph traversal is to pick
a random traversal seed and expand the connected components via consecutive lookups to
the distributed hash table. Since we have no apriori knowledge about the graph structure,
this leads to poor locality and fine grained remote accesses. In the extreme, the result can
be a single very long chain (very high diameter graph), leading to very high communication
costs. If we had an oracle partitioning function that could tell as ahead of time how the
k-mers are placed into contigs, one could partition the k-mers in such a way that k-mers
belonging eventually in the same contig are mapped to the same processor, which is a sim-
ilar idea to graph partitioning. Our oracle is the genetic similarity between genomes that
need to be assembled. For example, the human nucleotide diversity is estimated to be 0.1%
to 0.4% of base pairs. This intuition is the base of our communication-avoiding algorithm.

We completed our end-to-end de-novo genome assembly pipeline, called HipMer, which
also includes various performance improvements [13]. Figure 5 shows the end-to-end strong
scaling performance of HipMer on the human (left) and the wheat (right) data sets. For the
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Figure 5: End-to-end strong scaling for (left) human genome and (right) wheat genome.
Both axes are in log scale.

human dataset at 15,360 cores we achieve a speedup of 11.9x over our baseline execution
(480 cores). At this extreme scale the human genome can be assembled from raw reads in
just =~ 8.4 minutes. On the complex wheat dataset, we achieve a speedup up to 5.9x over
the baseline of 960 core execution, allowing us to perform the end-to-end assembly in 39
minutes when leveraging 15,360 cores. In the end-to-end experiments, a significant fraction
of the overhead is spent in parallel scaffolding (e.g. 68% for human at 960 cores); k-mer
analysis requires significantly less runtime (28% at 960 cores) and contig generation is the
least expensive computational component (4% at 960 cores).

These advances on de novo genome assembly enabled the whole-genome assembling
and anchoring of the hexaploid bread wheat genome, without using expensive chromosome
separation technologies. This work [11] is considered a breakthrough because polyploid
genomes (those that have more than two paired sets of chromosomes) were considered
beyond the reach of methods that solely rely on whole-genome shotgun sequencing data.
A review article of this work by independent authors praise this work by saying “The
combination of whole genome shotgun sequencing and linkage mapping by skim sequencing
produced a better genome assembly than both the chromosome arm-based assembly and a
previously described whole genome”.

4 Plans for the next fiscal year

Metagenome assembly: De novo assembly of large complex eukaryote genomes has been
a computational challenge where our team had successfully applied the state-of-the-art
techniques in high-performance parallel computing. A metagenome, a microbial community
recovered directly from an environmental sample, on the other hand, is like a eukaryote with
10,000 very highly polymorphic chromosomes sampled at widely differing depth. This fact
makes de novo assembly of metagenomes algorithmically more challenging as errors in high-
depth regions can occur more frequently than true DNA samples in low-depth regions. If
assembling a single genome is analogous to piecing together one novel, then assembling
metagenomic data is like rebuilding a library. We plan to work on developing new parallel
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algorithms for de novo assembly of metagenomic data sets, building on the techniques
we developed for our HipMer assembler as much as possible. This research requires new
algorithmic techniques and a change in the way assemblers currently run. We need new
high-performance assemblers that can handle metagenomic samples with uneven depth.

Graph matching algorithms: Using the maximal cardinality matching algorithm
as a building, we will develop successively more complex matching algorithms. This year,
we plan to develop distributed-memory cardinality matching algorithms; which can later be
used as a subroutine for bipartite maximum weighted-matching algorithms (MWM). MWM
algorithms have tremendous importance in the scalability of sparse direct solvers.

Non-negative Matrix Factorization: Non-negative Matrix Factorization (NMF) is
a dimension reduction technique used in a wide variety of fields ranging from chemometrics
to bioinformatics to machine learning. NMF is a non-convex optimization problem, and as
such it is computationally infeasible to compute a global solution. Many algorithms have
been proposed to solve the problem, but none are able to handle the large scale datasets
common in modern science. We consider a fast NMF algorithm based on the alternating
non-negatively constrained least squares (ANLS). We will develop parallel versions of this
algorithm and examine its runtime both theoretically and experimentally. We also plan
to test this implementation on a large-scale genomic dataset from JGI, with the goal of
separating contaminated (belongs to multiple organisms) contigs from clean (belongs to a
single organism) contigs.

Awards

Aydin Bulug, IEEE TCSC Award for Excellence for Early Career Research by the IEEE
Technical Committee on Scalable Computing, 2015

Software artifacts

Combinatorial BLAS: Both Dr. Bulu¢ and Dr. Azad contributed significantly to the
development of the Combinatorial BLAS (CombBLAS) library [8, 12] along both the func-
tionality and the performance axes. We have not made a new release this year due to the
unusually large number of new features added. Those features include complete in-node
multithreading support, experimental support for 3D distributions, a new maximal match-
ing algorithm implementation as well as the necessary auxiliary functions. We plan to
release a new version by December 2015 after all the new functionality is thoroughly tested.
HipMer: HipMer is an end-to-end high performance de novo assembler designed to
scale to massive concurrencies. It is based on the Meraculous assembler, which has been
shown to produce high quality assembly results. Large-scale results on the Cray XC30
supercomputer demonstrate efficient performance and scalability on thousands of cores.
The permission to distribute software has been given by LBL and will include (by SC’15
timeframe) both the full HipMer assembly pipeline, as well as an application performance
benchmark implementing a limited subset of the latter functionality. More on HipMer
can be found in the following news article: http://cs.1lbl.gov/news-media/news/2015/
meraculous-deciphering-the-book-of-life-with-supercomputers/.
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Invited Talks

Faster Parallel Graph BLAS Kernels and New Graph Algorithms in Matrix Algebra

IEEE High Performance Extreme Computing Conference (HPEC), Sep 16, 2015

HP Labs (Host: Robert Schreiber), August 18, 2015

Scalable algorithms for complex genome assembly, alignment, and genetic mapping

School of CSE (Host: Srinivas Aluru), Georgia Tech, Jan 16, 2015

Distributed-Memory Parallel Algorithms for Graph Traversal & Genome Assembly

Dept. CS&E (Host: Murat Demirbas), University at Buffalo, Dec 5, 2014
Dept. CS (Host: Petko Bogdanov), University at Albany, Dec 4, 2014

Dept. CS (Host: Leman Akoglu), Stony Brook University, Dec 3, 2014

Community Service (PI only)

Associate Editor: ACM Transactions on Parallel Computing

Guest Editor: Parallel Computing, special issue on “Graph Analysis for Scientific
Discovery”

Program Committee: IEEE Int. Parallel & Dist. Processing Symp. (IPDPS), 2015
Program Committee: International Conference on Supercomputing (ICS), 2015

Steering & Program Committee: Graph Algorithms Building Blocks (GaBB), IPDPS
workshop, 2015.
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